Skip to the content.
参考文献リスト メインページ

6.1節 はじめに

タイトル 著者名 リンク 登場順
Explaining and Harnessing Adversarial Examples Goodfellow et al 2014b arxiv 1
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review Xu et al 2019b arxiv 2

6.2節 グラフへの敵対的攻撃

タイトル 著者名 リンク 登場順
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective Xu et al 2019c arxiv 1
Towards Evaluating the Robustness of Neural Networks Carlini and Wagner 2017 arxiv 2
Adversarial Examples for Graph Data: Deep Insights into Attack and Defense Wu et al 2019 リンク 3
Explaining and Harnessing Adversarial Examples Goodfellow et al 2014b arxiv 4
Axiomatic Attribution for Deep Networks Sundararajan et al 2017 arxiv 5
Adversarial Attacks on Neural Networks for Graph Data Zügner et al 2018 arxiv 6
Adversarial Attacks on Graph Neural Networks via Meta Learning Zügner and Günnemann 2019 arxiv 7
Adversarial Attack on Graph Structured Data Dai et al 2018 arxiv 8
Q-learning Watkins and Dayan 1992 リンク 9
Attacking Graph Convolutional Networks via Rewiring Ma et al 2019d arxiv 10
Policy Gradient Methods for Reinforcement Learning with Function Approximation Sutton et al 2000 リンク 11

6.3節 敵対的攻撃に対する防御

タイトル 著者名 リンク 登場順
Explaining and Harnessing Adversarial Examples Goodfellow et al 2014b arxiv 1
Adversarial Attack on Graph Structured Data Dai et al 2018 arxiv 2
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure Feng et al 2019a arxiv 3
International encyclopedia of statistical science: Kullback-Leibler Divergence Joyce 2011 リンク 4
Latent Adversarial Training of Graph Convolution Networks Jin and Zhang 2019 PDF 5
Adversarial Examples for Graph Data: Deep Insights into Attack and Defense Wu et al 2019 リンク 6
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies Jin et al 2020a arxiv 7
Introduction To Data Mining Tan et al 2021 amazon 8
All You Need Is Low (Rank): Defending Against Adversarial Attacks on Graphs Entezari et al 2020 リンク 9
Robust Graph Convolutional Networks Against Adversarial Attacks Zhu et al 2019a PDF 10
Transferring Robustness for Graph Neural Network Against Poisoning Attacks Tang et al 2019 arxiv 11
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Finn et al 2017 arxiv 12
Graph Structure Learning for Robust Graph Neural Networks Jin et al 2020b arxiv 13

6.5節 参考文献

タイトル 著者名 リンク 登場順
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses Li et al 2020a arxiv 1
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies Jin et al 2020a arxiv 2
Adversarial Examples: Attacks and Defenses for Deep Learning Yuan et al 2019b arxiv 3
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review Xu et al 2019b arxiv 4
Adversarial Attacks and Defenses in Deep Learning Ren et al 2020 リンク 5
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey Zhang et al 2020 arxiv 6
メインページ