Skip to the content.
参考文献リスト メインページ

1.2節 なぜグラフニューラルネットワークなのか?

タイトル 著者名 リンク 登場順
Representing Big Data as Networks: New Methods and Insights Xu 2017 arxiv 1
Node Classification in Social Networks Bhagat et al 2011 arxiv 2
The Link-Prediction Problem for Social Networks Liben-Nowell and Kleinberg 2007 PDF 3
Collective Classification in Network Data Sen et al 2008 リンク 4

1.5節 グラフの表現学習に関する歴史

タイトル 著者名 リンク 登場順
Towards Feature Selection in Networks Gu and Han 2011 リンク 1
Feature Selection with Linked Data in Social Media Tang and Liu 2012a リンク 2
Efficient Partial Order Preserving Unsupervised Feature Selection on Networks Wei et al 2015 リンク 3
Unsupervised Feature Selection on Networks: A Generative View Wei et al 2016 リンク 4
Unsupervised Feature Selection for Linked Social Media Data Tang and Liu 2012b リンク 5
Toward Time-Evolving Feature Selection on Dynamic Networks Li et al 2016 リンク 6
Unsupervised Feature Selection for Multi-View Data in Social Media Tang et al 2013b リンク 7
Unsupervised Feature Selection in Signed Social Networks Cheng et al 2017 リンク 8
Unsupervised Nonlinear Feature Selection from High-Dimensional Signed Networks Huang et al 2020 リンク 9
Adaptive Unsupervised Feature Selection on Attributed Networks Li et al 2019b リンク 10
Normalized Cuts and Image Segmentation Shi and Malik 2000 PDF 11
On Spectral Clustering: Analysis and an algorithm Ng et al 2002 リンク 12
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Belkin and Niyogi 2003 PDF 13
A Global Geometric Framework for Nonlinear Dimensionality Reduction Tenenbaum et al 2000 PDF 14
Nonlinear Dimensionality Reduction by Locally Linear Embedding Roweis and Saul 2000 PDF 15
Combining Content and Link for Classification using Matrix Factorization Zhu et al 2007 PDF 16
Exploiting Homophily Effect for Trust Prediction Tang et al 2013a リンク 17
Matrix Factorization Techniques for Recommender Systems Koren et al 2009 PDF 18
Indexing by Latent Semantic Analysis Deerwester et al 1990 PDF 19
Node Classification in Signed Social Networks Tang et al 2016a リンク 20
Link Prediction via Matrix Factorization Menon and Elkan 2011 リンク 21
Community discovery using nonnegative matrix factorization Wang et al 2011 リンク 22
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec Qiu et al 2018b arxiv 23
Distributed Representations of Words and Phrases and their Compositionality Mikolov et al 2013 arxiv 24
DeepWalk: Online Learning of Social Representations Perozzi et al 2014 arxiv 25
LINE: Large-scale Information Network Embedding Tang et al 2015 arxiv 26
node2vec: Scalable Feature Learning for Networks Grover and Leskovec 2016 arxiv 27
GraRep: Learning Graph Representations with Global Structural Information Cao et al 2015 リンク 28
struc2vec: Learning Node Representations from Structural Identity Ribeiro et al 2017 arxiv 29
Community Preserving Network Embedding Wang et al 2017c リンク 30
Preserving Local and Global Information for Network Embedding Ma et al 2017 arxiv 31
PRUNE: Preserving Proximity and Global Ranking for Network Embedding Lai et al 2017 リンク 32
RaRE: Social Rank Regulated Large-scale Network Embedding Gu et al 2018 リンク 33
Asymmetric Transitivity Preserving Graph Embedding Ou et al 2016 PDF 34
Heterogeneous Network Embedding via Deep Architectures Chang et al 2015 リンク 35
metapath2vec: Scalable Representation Learning for Heterogeneous Networks Dong et al 2017 リンク 36
BiNE: Bipartite Network Embedding Gao et al 2018b PDF 37
Multi-Dimensional Network Embedding with Hierarchical Structure Ma et al 2018d リンク 38
Signed Network Embedding in Social Media Wang et al 2017b リンク 39
Structural Deep Embedding for Hyper-Networks Tu et al 2018 arxiv 40
Continuous-Time Dynamic Network Embeddings Nguyen et al 2018 リンク 41
Attributed Network Embedding for Learning in a Dynamic Environment Li et al 2017a arxiv 42
Graph neural networks for ranking Web pages Scarselli et al 2005 リンク 43
Spectral Networks and Locally Connected Networks on Graphs Bruna et al 2013 arxiv 44
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering Defferrard et al 2016 arxiv 45
Semi-Supervised Classification with Graph Convolutional Networks Kipf and Welling 2016a arxiv 46
Diffusion-Convolutional Neural Networks Atwood and Towsley 2016 arxiv 47
Learning Convolutional Neural Networks for Graphs Niepert et al 2016 arxiv 48
Neural Message Passing for Quantum Chemistry Gilmer et al 2017 arxiv 49
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks Monti et al 2017 arxiv 50
Graph Attention Networks Veličković et al 2017 arxiv 51
Inductive Representation Learning on Large Graphs Hamilton et al 2017a arxiv 52
Gated Graph Sequence Neural Networks Li et al 2015 arxiv 53
Hierarchical Graph Representation Learning with Differentiable Pooling Ying et al 2018c arxiv 54
Graph U-Nets Gao and Ji 2019 arxiv 55
Graph Convolutional Networks with EigenPooling Ma et al 2019b arxiv 56
Adversarial Attacks on Neural Networks for Graph Data Zügner et al 2018 arxiv 57
Adversarial Attacks on Graph Neural Networks via Meta Learning Zügner and Günnemann 2019 arxiv 58
Adversarial Attack on Graph Structured Data Dai et al 2018 arxiv 59
Attacking Graph Convolutional Networks via Rewiring Ma et al 2019d arxiv 60
Robust Graph Convolutional Networks Against Adversarial Attacks Zhu et al 2019a PDF 61
Transferring Robustness for Graph Neural Network Against Poisoning Attacks Tang et al 2019 arxiv 62
Graph Structure Learning for Robust Graph Neural Networks Jin et al 2020b arxiv 63
Stochastic Training of Graph Convolutional Networks with Variance Reduction Chen et al 2018a arxiv 64
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling Chen et al 2018b arxiv 65
Adaptive Sampling Towards Fast Graph Representation Learning Huang et al 2018 arxiv 66
Deep Collective Classification in Heterogeneous Information Networks Zhang et al 2018b リンク 67
Heterogeneous Graph Attention Network Wang et al 2019i arxiv 68
ActiveHNE: Active Heterogeneous Network Embedding Chen et al 2019b arxiv 69
Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs He et al 2019 arxiv 70
Multi-dimensional Graph Convolutional Networks Ma et al 2019c arxiv 71
Signed Graph Convolutional Network Derr et al 2018 arxiv 72
Hypergraph Neural Networks Feng et al 2019b arxiv 73
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs Yadati et al 2019 リンク 74
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs Pareja et al 2019 arxiv 75
Structural Deep Network Embedding Wang et al 2016 リンク 76
Deep Neural Networks for Learning Graph Representations Cao et al 2016 リンク 77
Variational Graph Auto-Encoders Kipf and Welling 2016b arxiv 78
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks Tai et al 2015 arxiv 79
Semantic Object Parsing with Graph LSTM Liang et al 2016 arxiv 80
GraphGAN: Graph Representation Learning with Generative Adversarial Nets Wang et al 2018a arxiv 81

1.7節 参考文献

タイトル 著者名 リンク 登場順
Computational Methods of Feature Selection Liu and Motoda 2007 amazon 1
Feature Selection for Knowledge Discovery and Data Mining Liu and Motoda 2012 amazon 2
Feature Selection for Classification: A Review Tang et al 2014a リンク 3
Feature Selection: A Data Perspective Li et al 2017b arxiv 4
Deep Learning Goodfellow et al 2016 amazon
amazon
5
Neural Networks and Deep Learning Aggarwal 2023 amazon 6
Automatic Speech Recognition: A Deep Learning Approach Yu and Deng 2016 amazon 7
Deep Learning for NLP and Speech Recognition Kamath et al 2019 amazon 8
Deep Learning in Natural Language Processing Deng and Liu 2018 amazon 9
メインページ