Towards Feature Selection in Networks |
Gu and Han |
2011 |
リンク |
1 |
Feature Selection with Linked Data in Social Media |
Tang and Liu |
2012a |
リンク |
2 |
Efficient Partial Order Preserving Unsupervised Feature Selection on Networks |
Wei et al |
2015 |
リンク |
3 |
Unsupervised Feature Selection on Networks: A Generative View |
Wei et al |
2016 |
リンク |
4 |
Unsupervised Feature Selection for Linked Social Media Data |
Tang and Liu |
2012b |
リンク |
5 |
Toward Time-Evolving Feature Selection on Dynamic Networks |
Li et al |
2016 |
リンク |
6 |
Unsupervised Feature Selection for Multi-View Data in Social Media |
Tang et al |
2013b |
リンク |
7 |
Unsupervised Feature Selection in Signed Social Networks |
Cheng et al |
2017 |
リンク |
8 |
Unsupervised Nonlinear Feature Selection from High-Dimensional Signed Networks |
Huang et al |
2020 |
リンク |
9 |
Adaptive Unsupervised Feature Selection on Attributed Networks |
Li et al |
2019b |
リンク |
10 |
Normalized Cuts and Image Segmentation |
Shi and Malik |
2000 |
PDF |
11 |
On Spectral Clustering: Analysis and an algorithm |
Ng et al |
2002 |
リンク |
12 |
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation |
Belkin and Niyogi |
2003 |
PDF |
13 |
A Global Geometric Framework for Nonlinear Dimensionality Reduction |
Tenenbaum et al |
2000 |
PDF |
14 |
Nonlinear Dimensionality Reduction by Locally Linear Embedding |
Roweis and Saul |
2000 |
PDF |
15 |
Combining Content and Link for Classification using Matrix Factorization |
Zhu et al |
2007 |
PDF |
16 |
Exploiting Homophily Effect for Trust Prediction |
Tang et al |
2013a |
リンク |
17 |
Matrix Factorization Techniques for Recommender Systems |
Koren et al |
2009 |
PDF |
18 |
Indexing by Latent Semantic Analysis |
Deerwester et al |
1990 |
PDF |
19 |
Node Classification in Signed Social Networks |
Tang et al |
2016a |
リンク |
20 |
Link Prediction via Matrix Factorization |
Menon and Elkan |
2011 |
リンク |
21 |
Community discovery using nonnegative matrix factorization |
Wang et al |
2011 |
リンク |
22 |
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec |
Qiu et al |
2018b |
arxiv |
23 |
Distributed Representations of Words and Phrases and their Compositionality |
Mikolov et al |
2013 |
arxiv |
24 |
DeepWalk: Online Learning of Social Representations |
Perozzi et al |
2014 |
arxiv |
25 |
LINE: Large-scale Information Network Embedding |
Tang et al |
2015 |
arxiv |
26 |
node2vec: Scalable Feature Learning for Networks |
Grover and Leskovec |
2016 |
arxiv |
27 |
GraRep: Learning Graph Representations with Global Structural Information |
Cao et al |
2015 |
リンク |
28 |
struc2vec: Learning Node Representations from Structural Identity |
Ribeiro et al |
2017 |
arxiv |
29 |
Community Preserving Network Embedding |
Wang et al |
2017c |
リンク |
30 |
Preserving Local and Global Information for Network Embedding |
Ma et al |
2017 |
arxiv |
31 |
PRUNE: Preserving Proximity and Global Ranking for Network Embedding |
Lai et al |
2017 |
リンク |
32 |
RaRE: Social Rank Regulated Large-scale Network Embedding |
Gu et al |
2018 |
リンク |
33 |
Asymmetric Transitivity Preserving Graph Embedding |
Ou et al |
2016 |
PDF |
34 |
Heterogeneous Network Embedding via Deep Architectures |
Chang et al |
2015 |
リンク |
35 |
metapath2vec: Scalable Representation Learning for Heterogeneous Networks |
Dong et al |
2017 |
リンク |
36 |
BiNE: Bipartite Network Embedding |
Gao et al |
2018b |
PDF |
37 |
Multi-Dimensional Network Embedding with Hierarchical Structure |
Ma et al |
2018d |
リンク |
38 |
Signed Network Embedding in Social Media |
Wang et al |
2017b |
リンク |
39 |
Structural Deep Embedding for Hyper-Networks |
Tu et al |
2018 |
arxiv |
40 |
Continuous-Time Dynamic Network Embeddings |
Nguyen et al |
2018 |
リンク |
41 |
Attributed Network Embedding for Learning in a Dynamic Environment |
Li et al |
2017a |
arxiv |
42 |
Graph neural networks for ranking Web pages |
Scarselli et al |
2005 |
リンク |
43 |
Spectral Networks and Locally Connected Networks on Graphs |
Bruna et al |
2013 |
arxiv |
44 |
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering |
Defferrard et al |
2016 |
arxiv |
45 |
Semi-Supervised Classification with Graph Convolutional Networks |
Kipf and Welling |
2016a |
arxiv |
46 |
Diffusion-Convolutional Neural Networks |
Atwood and Towsley |
2016 |
arxiv |
47 |
Learning Convolutional Neural Networks for Graphs |
Niepert et al |
2016 |
arxiv |
48 |
Neural Message Passing for Quantum Chemistry |
Gilmer et al |
2017 |
arxiv |
49 |
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks |
Monti et al |
2017 |
arxiv |
50 |
Graph Attention Networks |
Veličković et al |
2017 |
arxiv |
51 |
Inductive Representation Learning on Large Graphs |
Hamilton et al |
2017a |
arxiv |
52 |
Gated Graph Sequence Neural Networks |
Li et al |
2015 |
arxiv |
53 |
Hierarchical Graph Representation Learning with Differentiable Pooling |
Ying et al |
2018c |
arxiv |
54 |
Graph U-Nets |
Gao and Ji |
2019 |
arxiv |
55 |
Graph Convolutional Networks with EigenPooling |
Ma et al |
2019b |
arxiv |
56 |
Adversarial Attacks on Neural Networks for Graph Data |
Zügner et al |
2018 |
arxiv |
57 |
Adversarial Attacks on Graph Neural Networks via Meta Learning |
Zügner and Günnemann |
2019 |
arxiv |
58 |
Adversarial Attack on Graph Structured Data |
Dai et al |
2018 |
arxiv |
59 |
Attacking Graph Convolutional Networks via Rewiring |
Ma et al |
2019d |
arxiv |
60 |
Robust Graph Convolutional Networks Against Adversarial Attacks |
Zhu et al |
2019a |
PDF |
61 |
Transferring Robustness for Graph Neural Network Against Poisoning Attacks |
Tang et al |
2019 |
arxiv |
62 |
Graph Structure Learning for Robust Graph Neural Networks |
Jin et al |
2020b |
arxiv |
63 |
Stochastic Training of Graph Convolutional Networks with Variance Reduction |
Chen et al |
2018a |
arxiv |
64 |
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling |
Chen et al |
2018b |
arxiv |
65 |
Adaptive Sampling Towards Fast Graph Representation Learning |
Huang et al |
2018 |
arxiv |
66 |
Deep Collective Classification in Heterogeneous Information Networks |
Zhang et al |
2018b |
リンク |
67 |
Heterogeneous Graph Attention Network |
Wang et al |
2019i |
arxiv |
68 |
ActiveHNE: Active Heterogeneous Network Embedding |
Chen et al |
2019b |
arxiv |
69 |
Cascade-BGNN: Toward Efficient Self-supervised Representation Learning on Large-scale Bipartite Graphs |
He et al |
2019 |
arxiv |
70 |
Multi-dimensional Graph Convolutional Networks |
Ma et al |
2019c |
arxiv |
71 |
Signed Graph Convolutional Network |
Derr et al |
2018 |
arxiv |
72 |
Hypergraph Neural Networks |
Feng et al |
2019b |
arxiv |
73 |
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs |
Yadati et al |
2019 |
リンク |
74 |
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs |
Pareja et al |
2019 |
arxiv |
75 |
Structural Deep Network Embedding |
Wang et al |
2016 |
リンク |
76 |
Deep Neural Networks for Learning Graph Representations |
Cao et al |
2016 |
リンク |
77 |
Variational Graph Auto-Encoders |
Kipf and Welling |
2016b |
arxiv |
78 |
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks |
Tai et al |
2015 |
arxiv |
79 |
Semantic Object Parsing with Graph LSTM |
Liang et al |
2016 |
arxiv |
80 |
GraphGAN: Graph Representation Learning with Generative Adversarial Nets |
Wang et al |
2018a |
arxiv |
81 |