Skip to the content.
参考文献リスト メインページ

14.2節 深い層を持つGNN

タイトル 著者名 リンク 登場順
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning Li et al 2018b arxiv 1
Spectral Graph Theory Chung and Graham 1997 amazon 2
Graph Neural Networks Exponentially Lose Expressive Power for Node Classification Oono and Suzuki 2020 arxiv 3
Representation Learning on Graphs with Jumping Knowledge Networks Xu et al 2018a arxiv 4
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification Rong et al 2020 arxiv 5
PairNorm: Tackling Oversmoothing in GNNs Zhao and Akoglu 2019 arxiv 6

14.3節 自己教師あり学習

タイトル 著者名 リンク 登場順
Rethinking the Inception Architecture for Computer Vision Szegedy et al 2016 arxiv 1
Very Deep Convolutional Networks for Large-Scale Image Recognition Simonyan and Zisserman 2014 arxiv 2
Language Models are Unsupervised Multitask Learners Radford et al 2019 リンク 3
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin et al 2018 arxiv 4
Self-supervised Learning on Graphs: Deep Insights and New Direction Jin et al 2020c arxiv 5
Pre-Training graph neural networks for generic structural feature extraction Hu et al 2019 arxiv 6
GPT-GNN: Generative Pre-Training of Graph Neural Networks Hu et al 2020a arxiv 7
Self-Supervised Graph Representation Learning via Global Context Prediction Peng et al 2020 arxiv 8
A fast and high quality multilevel scheme for partitioning irregular graphs Karypis and Kumar 1998 リンク 9
Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels Sun et al 2019c arxiv 10
When Does Self-Supervision Help Graph Convolutional Networks? You et al 2020 arxiv 11
Semi-supervised learning using Gaussian fields and harmonic functions Zhu et al 2003 リンク 12
Iterative Classification in Relational Data Neville and Jensen 2000 リンク 13
Deep Self-Learning From Noisy Labels Han et al 2019 arxiv 14
Strategies for Pre-training Graph Neural Networks Hu et al 2020b arxiv 15
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Sun et al 2019b arxiv 16

14.4節 グラフニューラルネットワークの表現力

タイトル 著者名 リンク 登場順
How Powerful are Graph Neural Networks? Xu et al 2019d arxiv 1
The reduction of a graph to canonical form and the algebra which appears therein Weisfeiler and Lehman 1968 PDF 2
Computers and Intractability: A Guide to the Theory of Np-Completeness Garey and Johnson 1979 amazon 3
Graph Isomorphism in Quasipolynomial Time Babai 2016 arxiv 4
An Optimal Lower Bound on the Number of Variables for Graph Identification Cai et al 1992 PDF 5
Inductive Representation Learning on Large Graphs Hamilton et al 2017a arxiv 6

14.6節 参考文献

タイトル 著者名 リンク 登場順
GNNExplainer: Generating Explanations for Graph Neural Networks Ying et al 2019 arxiv 1
XGNN: Towards Model-Level Explanations of Graph Neural Networks Yuan et al 2020 arxiv 2
Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks Tang et al 2020 arxiv 3
Hyperbolic Graph Convolutional Neural Networks Chami et al 2019 arxiv 4
Hyperbolic Graph Neural Networks Liu et al 2019a arxiv 5
メインページ