Skip to the content.
参考文献リスト メインページ

10.1節 はじめに

タイトル 著者名 リンク 登場順
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Jurafsky and Martin 2000 amazon 1
Abstract Meaning Representation for Sembanking Banarescu et al 2013 PDF 2
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling Marcheggiani and Titov 2017 arxiv 3
Question Answering by Reasoning Across Documents with Graph Convolutional Networks De Cao et al 2019 arxiv 4
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering Cao et al 2019 arxiv 5
Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks Song et al 2018a arxiv 6
Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs Tu et al 2019 arxiv 7
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction Zhang et al 2018c arxiv 8
GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction Fu et al 2019 リンク 9
Attention Guided Graph Convolutional Networks for Relation Extraction Guo et al 2019 arxiv 10
Graph Neural Networks with Generated Parameters for Relation Extraction Zhu et al 2019b リンク 11
Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network Sahu et al 2019 arxiv 12
Joint Type Inference on Entities and Relations via Graph Convolutional Networks Sun et al 2019a リンク 13
Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks Zhang et al 2019d arxiv 14
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks Marcheggiani et al 2018 arxiv 15
Graph-to-Sequence Learning using Gated Graph Neural Networks Beck et al 2018 arxiv 16
Structural Neural Encoders for AMR-to-text Generation Cohen 2019 arxiv 17
A Graph-to-Sequence Model for AMR-to-Text Generation Song et al 2018b arxiv 18
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks Xu et al 2018b arxiv 19
Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach Hamaguchi et al 2017 arxiv 20
Modeling Relational Data with Graph Convolutional Networks Schlichtkrull et al 2018 arxiv 21
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs Nathani et al 2019 arxiv 22
End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion Shang et al 2019a arxiv 23
Knowledge Graph Convolutional Networks for Recommender Systems Wang et al 2019c arxiv 24
Graph Wavelet Neural Network Xu et al 2019a arxiv 25

10.2節 意味役割のラベリング(SRL)

タイトル 著者名 リンク 登場順
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling Marcheggiani and Titov 2017 arxiv 1
A Primer on Neural Network Models for Natural Language Processing Goldberg 2016 arxiv 2

10.3節 ニューラル機械翻訳

タイトル 著者名 リンク 登場順
Neural Machine Translation by Jointly Learning to Align and Translate Bahdanau et al 2014 arxiv 1
Attention Is All You Need Vaswani et al 2017 arxiv 2
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin et al 2018 arxiv 3
Improving Language Understanding by Generative Pre-Training Radford et al 2018 リンク 4
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks Marcheggiani et al 2018 arxiv 5
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation Bastings et al 2017 arxiv 6

10.4節 関係抽出

タイトル 著者名 リンク 登場順
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction Zhang et al 2018c arxiv 1
GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction Fu et al 2019 リンク 2
Attention Guided Graph Convolutional Networks for Relation Extraction Guo et al 2019 arxiv 3
Graph Neural Networks with Generated Parameters for Relation Extraction Zhu et al 2019b リンク 4
Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network Sahu et al 2019 arxiv 5
Joint Type Inference on Entities and Relations via Graph Convolutional Networks Sun et al 2019a リンク 6
Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks Zhang et al 2019d arxiv 7
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling Marcheggiani and Titov 2017 arxiv 8

10.5節 質問応答(QA)

タイトル 著者名 リンク 登場順
Question Answering by Reasoning Across Documents with Graph Convolutional Networks De Cao et al 2019 arxiv 1
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering Cao et al 2019 arxiv 2
Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks Song et al 2018a arxiv 3
Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs Tu et al 2019 arxiv 4
Constructing Datasets for Multi-hop Reading Comprehension Across Documents Welbl et al 2018 arxiv 5
End-to-end Neural Coreference Resolution Lee et al 2017 arxiv 6
Attention Is All You Need Vaswani et al 2017 arxiv 7
Deep contextualized word representations Peters et al 2018 arxiv 8

10.6節 Graph-to-Sequence学習

タイトル 著者名 リンク 登場順
Neural Machine Translation by Jointly Learning to Align and Translate Bahdanau et al 2014 arxiv 1
AMR-to-text Generation with Synchronous Node Replacement Grammar Song et al 2017 arxiv 2
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks Marcheggiani et al 2018 arxiv 3
Graph-to-Sequence Learning using Gated Graph Neural Networks Beck et al 2018 arxiv 4
Structural Neural Encoders for AMR-to-text Generation Cohen 2019 arxiv 5
A Graph-to-Sequence Model for AMR-to-Text Generation Song et al 2018b arxiv 6
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling Marcheggiani and Titov 2017 arxiv 7
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks Xu et al 2018b arxiv 8

10.7節 知識グラフ上のGNN

タイトル 著者名 リンク 登場順
Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach Hamaguchi et al 2017 arxiv 1
Modeling Relational Data with Graph Convolutional Networks Schlichtkrull et al 2018 arxiv 2
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs Nathani et al 2019 arxiv 3
End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion Shang et al 2019a arxiv 4
Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding Wang et al 2019f arxiv 5
Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks Park et al 2019 arxiv 6
OAG: Toward Linking Large-scale Heterogeneous Entity Graphs Zhang et al 2019b リンク 7
Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks Wang et al 2018c リンク 8
Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network Xu et al 2019e arxiv 9
Composition-based Multi-Relational Graph Convolutional Networks Vashishth et al 2019 arxiv 10
Learning Multi-Relational Semantics Using Neural-Embedding Models Yang et al 2014 arxiv 11

10.9節 参考文献

タイトル 著者名 リンク 登場順
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures Miwa and Bansal 2016 arxiv 1
N-ary Relation Extraction using Graph State LSTM Song et al 2018c arxiv 2
Abusive Language Detection with Graph Convolutional Networks Mishra et al 2019 arxiv 3
Structured Neural Summarization Fernandes et al 2018 arxiv 4
Attention Is All You Need Vaswani et al 2017 arxiv 5
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin et al 2018 arxiv 6
メインページ